High-Power, Ultra-Broadband THz Generation in Organic Crystal MNA

S. Mansourzadeh, M. F. Nielsen, A. Omar, T. Vogel, D. J. Michaelis, J. A. Johnson, C. J. Saraceno

1Photonics and Ultrafast Laser Science (PULS), Ruhr-University Bochum, Germany
2Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA

Motivation

THz source based on optical rectification in a new generation of nonlinear organic crystals:

- High power (>1 mW), high efficiency (percent level) and ultra broad bandwidth (>10 THz)
- Discovering, synthesizing and characterization of new crystals through structural data mining [1]
- Exceeding the performance of industry standards in terms of crystal size and quality

MNA (Amino-5-Nitrotoluene): a good candidate to be investigate with high power, high repetition rate, Yb-based pump laser:

- High molecular hyperpolarizability
- Relatively large molecular number density
- High nonlinear coefficient of 250 pm/V [2]

THz-TDS setup

Driving laser: TruMicro 2000, TRUMPF

\[\lambda: 1030 \text{ nm} \quad P_{\text{avg}}: 18 \text{ W} \]

\[f_{\text{rep}}: 400 \text{ kHz} \quad \tau_p: 35 \text{ fs (after MPC)} \]

THz generation

MNA crystal thickness: 1 mm
Beam diameter \((1/e^2)\) on the crystal: 2.3 mm

Detection crystal

MNA with thickness of 0.65 mm or gallium phosphide (GaP) with thickness of 0.1 mm

Results & Discussion

THz power measured by a calibrated power meter

Maximum THz power at pump power of 5.3 W: 5.2 mW
Maximum efficiency at pump power of 5.3 W: 0.08%

Detection GaP \(\rightarrow\) Bandwidth of 7 THz
Detection MNA \(\rightarrow\) Bandwidth of 12 THz

Electro optic sampling (EOS)

Conclusion & Outlook

- A high average power (5.2 mW), ultrabroadband (>12 THz), and high dynamic range THz-TDS based on MNA
- A unique tool for a variety of spectroscopy experiments and nonlinear THz spectroscopy
- Power scaling by optimizing the pump spot, reducing the repetition rate of the laser and operating in purged conditions